赢迪文献分享 | 肺纤维化之TGF-β

当前位置:主页 > 公司动态 > 文献分享 >

赢迪文献分享 | 肺纤维化之TGF-β

日期:2020-06-12 / 人气:

TGFβ超家族是由35种以上具有不同细胞调节功能的结构相关蛋白组成的一个大类,包括TGFβ1/ 2/3同工型,激活素,抑制素,骨形态发生蛋白(BMP),生长分化因子(GDF)等。TGFβ 本身参与许多细胞过程,包括生长抑制,细胞迁移,侵袭,上皮-间质转化(EMT),细胞外基质(ECM)重塑和免疫抑制。 TGF-β信号通路的改变涉及人类疾病,包括CV(心血管),纤维化,生殖,癌症或伤口愈合等。其中一些疾病是遗传性疾病,例如HHT(遗传性出血性毛细血管扩张),家族性原发性肺动脉高压和JP(少年息肉)。

 

TGF-β在肺纤维化中起着关键作用,不仅通过其吸引成纤维细胞并刺激其增殖的能力,而且还通过在肺泡上皮细胞中诱导EMT(上皮-间质转化),肌成纤维细胞转化导致细胞运动性增加和收缩表型的改变,从而使组织修复的初始阶段成为可能。在病理性纤维化中,这种转化是永久性的,并导致组织和器官功能障碍。TGFβs亚型TGFβ1-3,是主要的促纤维化因子,尽管TGFβ超家族的其他成员(例如 BMP9和激活素A)也参与了纤维化疾病。TGFβs在纤维化中发挥中心作用的最重要证据来自转基因,例如TGFβ1的过表达诱导和促进组织纤维化,TGF-β同工型具有诱导间充质细胞中ECM蛋白表达的能力,并具有刺激防止ECM酶促分解的蛋白酶抑制剂的能力。TGFβ1,TGFβ2和TGFβ3具有完全不同的功能,主要基于它们的组织表达和激活的不同,其中TGF-β1被认为是最主要的表型。而针对整个信号通路的上下游研发多种药物,阶段遍布1-3期。因为TGF-β的信号通路是调节多种生物学过程,十分依赖上下游及受体环境的功能,而且在肿瘤中也是既促进又抑制细胞因子,也是正常伤口愈合的重要方式,如果直接去抑制TGF-β可能会影响正常的其他功能。如何把握平衡,对于药物如何达到肺部起效、药物的特异性等是研发者需要考虑的。
 

 

 


参考资料:

1. Santibañez JF, Quintanilla M, Bernabeu C. TGF-β/TGF-β receptor system and its role in physiological and pathological conditions. Clin Sci (Lond). 2011;121(6):233‐251. doi:10.1042/CS20110086;
2. Appiah Adu-Gyamfi E, Tanam Djankpa F, Nelson W, et al. Activin and inhibin signaling: From regulation of physiology to involvement in the pathology of the female reproductive system. Cytokine. 2020;133:155105. doi:10.1016/j.cyto.2020.155105;
3. Miyazono K, Kamiya Y, Morikawa M. Bone morphogenetic protein receptors and signal transduction. J Biochem. 2010;147(1):35‐51. doi:10.1093/jb/mvp148;
4. Derynck R, Budi EH. Specificity, versatility, and control of TGF-β family signaling. Sci Signal. 2019;12(570):eaav5183. doi:10.1126/scisignal.aav5183;
5. Saha, Partha S., and Michael Doran. "Different in vitro activation methods for latent transforming growth factors (TGF)–β: considerable exogenous factors to promote higher mesenchymal-origin cell proliferation in a bioprocessing platform." Biomedical Science and Engineering 2.1 (2014): 5-12;
6. Akhurst RJ. Targeting TGF-β Signaling for Therapeutic Gain. Cold Spring Harb Perspect Biol. 2017;9(10):a022301. doi:10.1101/cshperspect.a022301;
7. Lee CM, Park JW, Cho WK, et al. Modifiers of TGF-β1 effector function as novel therapeutic targets of pulmonary fibrosis. Korean J Intern Med. 2014;29(3):281‐290. doi:10.3904/kjim.2014.29.3.281;
8. Fernandez IE, Eickelberg O. The impact of TGF-β on lung fibrosis: from targeting to biomarkers. Proc Am Thorac Soc. 2012;9(3):111‐116. doi:10.1513/pats.201203-023AW;
9. Pilling D, Gomer RH. The Development of Serum Amyloid P as a Possible Therapeutic. Front Immunol. 2018;9:2328. doi:10.3389/fimmu.2018.02328;
10. Li FZ, Cai PC, Song LJ, et al. Crosstalk between calpain activation and TGF-β1 augments collagen-I synthesis in pulmonary fibrosis. Biochim Biophys Acta. 2015;1852(9):1796‐1804. doi:10.1016/j.bbadis.2015.06.008;
11. Rauchman M, Griggs D. Emerging strategies to disrupt the central TGF-β axis in kidney fibrosis. Transl Res. 2019;209:90‐104. doi:10.1016/j.trsl.2019.04.003;
12. Lipson KE, Wong C, Teng Y, Spong S. CTGF is a central mediator of tissue remodeling and fibrosis and its inhibition can reverse the process of fibrosis. Fibrogenesis Tissue Repair. 2012;5(Suppl 1):S24. doi:10.1186/1755-1536-5-S1-S24;
13. Ramazani Y, Knops N, Elmonem MA, et al. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 2018;68-69:44‐66. doi:10.1016/j.matbio.2018.03.007;
14. Tang X, Muhammad H, McLean C, et al. Connective tissue growth factor contributes to joint homeostasis and osteoarthritis severity by controlling the matrix sequestration and activation of latent TGFβ. Ann Rheum Dis. 2018;77(9):1372‐1380. doi:10.1136/annrheumdis-2018-212964;
15. Richeldi L, Fernández Pérez ER, Costabel U, et al. Pamrevlumab, an anti-connective tissue growth factor therapy, for idiopathic pulmonary fibrosis (PRAISE): a phase 2, randomised, double-blind, placebo-controlled trial. Lancet Respir Med. 2020;8(1):25‐33. doi:10.1016/S2213-2600(19)30262-0;